
Data-driven Inverse Dynamics for Human Motion

Xiaolei Lv?] Jinxiang Chai† Shihong Xia?
? Institute of Computing Technology, Chinese Academy of Sciences

] University of Chinese Academy of Sciences †Texas A&M University

Figure 1: Our data-driven inverse dynamics system automatically estimates biomechanically valid contact information and internal joint
torques for the input kinematic human motion data such as walking, hopping, running and jumping.

Abstract

Inverse dynamics is an important and challenging problem in
human motion modeling and physics-based motion generation.
Previous solutions to inverse dynamics are often noisy and am-
biguous particularly when double stances occur. In this paper, we
present a novel inverse dynamics method that accurately recon-
structs biomechanically valid contact information, including center
of pressure, contact forces and torsional torques, and internal joint
torques from input kinematic human motion data. Our key idea
is to apply statistical modeling technique to a set of preprocessed
human kinematics and dynamics data captured by a combination
of an optical mocap system, pressure insoles and force plates. We
formulate the data-driven inverse dynamics problem in a maximum
a posteriori (MAP) framework by estimating the most likely contact
information and internal joint torques that are consistent with
input kinematic motion data. We construct a low-dimensional
prior model for contact information and internal joint torques to
reduce ambiguity of inverse dynamics for human motion. We
demonstrate the accuracy of our method on a wide variety of
human movements including walking, jumping, running, turning
and hopping and achieve state of the art accuracy in our comparison
against alternative methods. In addition, we discuss how to extend
the data-driven inverse dynamics framework to motion editing,
filtering and motion control.

Keywords: Character animation, data-driven, inverse dynamics

Concepts: •Computing methodologies→Motion capture; Mo-
tion processing; Virtual reality; Physical simulation;

1 Introduction

One of classic problems in human motion modeling and robotics
is how to accurately identify contact information and internal joint
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torques from input kinematic motion data. With such dynamics
data, motion can be more accurately edited to meet new con-
straints [Sulejmanpašić and Popović 2005]. Those data can be
utilized to generate new motions that react to external perturbations
and changes in physical quantities such as frictions [Wei et al.
2011], can be physically simulated to allow external perturba-
tions [Muico et al. 2009], can serve as a basis for development
of new control or synthesis algorithms for human characters [Sok
et al. 2007], and can allow us to explore questions of human
behavior [Liu et al. 2005], such as whether people moves in a way
that minimizes some measure of effort or appropriateness for the
task.

Inverse dynamics is challenging because the problem is often noisy
and ambiguous, particularly when double stances occur. Current
solutions often utilizes heuristic rules [Ren et al. 2008; Ko and
Badler 1996] or “minimal principle” [Witkin and Kass 1988; Cohen
1992] to reduce the ambiguity of solution space. However, none of
the solutions can accurately produce biomechanically valid contact
information and internal joint torques that are consistent with input
kinematic data.

In this paper, we present a novel inverse dynamics method that
accurately estimates the contact information and internal joint
torques for the input kinematic human motion data (Figure 1). Our
approach is data-driven and utilize dynamics priors embedded in
prerecorded kinematics and dynamics data. Specifically, we apply
statistical analysis techniques to a set of pre-captured human motion
data consisting of both human kinematics and dynamics data, and
construct a low-dimensional prior model to constrain the solution
space for inverse dynamics. We formulate the data-driven inverse
dynamics problem in a maximum a posteriori (MAP) framework
by estimating the most likely contact information and internal joint
torques consistent with input kinematic data. To construct a large
motion database for human kinematics and dynamics, we firstly
use a Vicon optical motion capture system and four Kistler force
plates, as well as a pair of pressure insoles, to capture both human
kinematics and contact data. We then accurately reconstruct the
internal joint torques, contact forces, torsional torques and center
of the pressure from recorded kinematic and contact data.

We demonstrate the accuracy of our method on a wide variety of
human movements including walking, jumping, running, turning
and hopping. We show that our method advances the state of the
art by comparing it against alternative methods, including single
frame optimization method [Ko and Badler 1996] and spacetime
optimization method [Witkin and Kass 1988; Cohen 1992]. The



evaluation shows that our method obtains consistently better results
than alternative methods for all types of test data. The data-driven
inverse dynamics model can be generalized to new people and
new motions. We also demonstrate the power and effectiveness
of our method on motion editing, filtering and motion control. For
example, we can generate a natural-looking and physically realistic
human motion that reacts to changes in physical parameters such as
friction properties of environments.

1.1 Contributions

Our approach to inverse dynamics and physics-based human mo-
tion modeling includes a number of technical contributions:

• A novel data-driven method to solve the inverse dynamics
problem for accurately estimating the contact information and
internal joint torques from kinematic human motion data.

• The first full-body motion capture database that accurately
captures contact forces, center of pressure, torsional torques
and internal joint torques for varieties of human motions
including walking, jumping, running, turning and hopping.

• A new method to estimate the body segment parameter and
dynamics data.

• A new physically valid statistical model for human motion
generation using dynamic priors embedded in prerecorded
kinematics and dynamics data.

2 Background

We introduce a data-driven inverse dynamics method by construct-
ing a low-dimensional prior model on kinematic and dynamic
human motion data, and integrate the model into previous motion
synthesis model to generate natural-looking and physically-valid
human motion. Therefore, we focus on models solving the inverse
dynamics problem, the construction of dynamic motion database
and physically valid data-driven motion models.

Inverse dynamics solution. Inverse dynamics is a basic step in
physics-based human motion modeling. It is an indeterminate
problem during the double support phase. Some scientists in
biomechanics community presented a variety of assumption [Ren
et al. 2008; Ko and Badler 1996] to solve the indeterminate
problem. Those methods do not work for asymmetric human gait.
Xiang et al. [2011] used an optimization-based predictive dynamics
approach to calculate the joint torques and ground reaction forces
during asymmetric gait motion. However, it dose not work well
for a completely natural motion because of the usage of “minimal
principle” objective function. Oh et al. [2013] proposed a two
phases method to solve the inverse dynamics problem. The
traditional method of Newtonian mechanics was used for the single
support phase. An artificial neural network model is applied for the
double support phase. Since the two phases are mutually disjointed,
there can be inevitable discontinuity. Zell et al. [2015] proposed
a combined representation of motion and physical parameters and
used the k-nearest-neighbour and asymmetrical principal compo-
nent analysis to deduce the ground reaction forces and joint torques
directly from an input motion. The predicted contact information
using the regression method may not be physically valid due to
the lack of physical constraints. There are also some tools such
as OpenSim [Delp et al. 2007], Anybody [Anybodytech 2016] used
in biomechanics community to solve the inverse dynamics problem
with estimated contact forces. In this paper, we combine the priors
embedded in training data and physical constraints to solve the
inverse dynamics problem.

The standard solution to the inverse dynamics problem over a
motion sequence is spacetime formulation in computer graphics
literature [Witkin and Kass 1988; Cohen 1992]. This optimization
is subject to foot-ground contact constraints, friction limit con-
straints and the discretization of physics constraints determined by
a finite difference scheme. The generated contact force and internal
joint torques are physically valid. However, they may not match
the true situation. In order to make the generated motion look
natural, the “minimal principle” strategy is adopted, e.g. minimal
energy, minimal torque, and so on. These heuristics work well for
highly dynamic motions, but it remains challenging to model low
energy motions and highly stylized human movements. Brubaker
et al. [2009] used a 12-segment articulated body model to estimate
contact dynamics. This method gives a good approximation
concerning the mean value, but differs regarding temporal develop-
ment. Liu et al. [2010; 2015] used randomized sampling to tackle
control problems given a reference motion. Vondrak et al. [2008;
2012] used physical simulation for human motion tracking given
monocular/multi-view imagery. These methods can be seen as
another solution to the inverse dynamics problem. However, the
tracking and open-loop control nature of the algorithm implies the
algorithm can fail when the motion is too long. Meanwhile sporadic
contact points and highly discontinuous pressure distribution often
occur in collisions between rigid bodies [Jain and Liu 2011]. We
instead use a data-driven model on the captured kinematic and
dynamic motion data to solve the inverse dynamics problem.

The body segment parameter (BSP) is very essential to the inverse
dynamics [Rao et al. 2006]. There are two main methods to estimate
the BSPs. Predictive equation method is based on the density
data from cadavers [Yeadon and Morlock 1989]. The advantage of
this method is quick and easy. However, the predictive equations
are limited by the measure techniques (e.g. uniform density) and
moreover by the group on which they are based (e.g. small sample,
elder males). The second method is to use the medical imaging
techniques to measure BSPs directly on living subjects [De Leva
1996; Ho et al. 2013]. This method provides accurate results,
however, it may not be possible for all researchers to estimate BSPs
by scanning individual subjects. Our approach uses the force plate
data and the captured kinematic data to compute the mass and the
moment of inertia of each body segment. The result of optimized
BSPs is consistent with the biomechanics literature [Ho et al. 2013].

Dynamic human motion database. Human motion data includes
kinematic and dynamic motion data. The kinematic human motion
data consists of joint kinematics, and the dynamic data contains
internal joint torques, ground reaction force, and so on. In computer
graphics community, the databases of human motion mainly con-
tain kinematic data, for example, the CMU online mocap database.
There are many works in computer graphics involving force or
pressure captures [Aladdin and Kry 2012; Kry and Pai 2006]. In
this paper, we focus on the capture of ground reaction forces. To
obtain the dynamic motion data, force plates and pressure insoles
are widely used to measure the ground reaction forces [Zhang
et al. 2014; Adelsberger and Troster 2013; Ha et al. 2011; Yin
and Pai 2003]. Unfortunately, the unmovable force platform can
only be operated in a highly restricted environment. It is not
suitable to capture highly dynamic human motion. The pressure
insoles can be used to acquire motions that are difficult to capture in
restrictive lab settings, such as highly dynamic motions that require
a large amount of space. However, each pressure sensor in pressure
insoles only records an analog resistance reading proportional to
the applied pressure. As a result, a scaling parameter for each
sensor and the horizontal contact force and torsional torque cannot
be measured by the pressure insoles. Forner-Cordero et al. [2006]
proposed a method to calculate the inverse dynamics from pressure
insoles. However, there is no benchmark data (force plate data) to



calibrate the scaling parameters of pressure insoles. As a result,
the noise in the kinematic data and pressure insoles data will affect
the accuracy of the optimization. The work of [Zhang et al. 2014]
uses three Kinect cameras and pressure insoles to capture highly
dynamic motions. In this paper, the preprocessing method for
constructing ground truth training data requires kinematics data
captured by Vicon, as well as force plate/pressure data. The data-
driven inverse dynamics method does not use any pressure or force
sensor data required by [Zhang et al. 2014]. Instead, it utilizes
priors embedded in training kinematics/dynamics mocap data to
reduce ambiguity.

Physically valid data-driven motion models. A few works have
been done using the data-driven techniques in physics-based human
motion modeling. Ye et al. [2008] and Safonova et al. [2004] used
the data to reduce the search space for physics-based optimization.
It has been shown that a global subspace model for kinematic poses
is not sufficient to model heterogeneous human actions [Wei et al.
2011]. In particular, Wei et al. [2011] proposed a physically valid
statistical model for human motion generation. They choose to
model the force field priors based on generalized forces rather than
joint torques. As a result, the learned force field priors can only
predict resultant forces of joint torques and contact forces. Differ-
ent from the previous methods, our data-driven techniques utilize
dynamics priors to predict contact information and internal joint
torques accurately. This enables us to generalize the physically-
valid data-driven motion models to human motion control.

3 Overview

We construct the first full-body kinematics and dynamics database
for human motion research. We use the dynamic priors embedded
in the database to constrain the solution space for inverse dynamics.
The system consists of two main components (Figure 2): the
preprocessing component (Section 4) and data-driven inverse dy-
namics component (Section 5). The data-driven inverse dynamics
model can also be generalized to constraint-based motion synthesis
(Section 6).

Kinematic and Dynamic Motion Database. After capturing
the kinematic data and the contact forces for human motion, we
synchronize those data from different devices by aligning contact
event and computing the scales of the pressure insoles. We further
optimize the body segment parameters from kinematic data and
force plate data, and leverage Newtonian physics, contact pressure
information and kinematic poses to reconstruct contact forces and
internal joint torques (Section 4).

Data-driven Inverse Dynamics. Given a set of dynamic hu-
man motion data, we construct a local low-dimensional dynamic
motion prior. We show how to combine dynamic motion priors
with physics-based dynamic models seamlessly into a probabilistic
framework and how to use the model to predict the contact infor-
mation and joint torques of the input kinematic motion data. We
formulate the data-driven inverse dynamics problem in a Maximum
A Posterior (MAP) framework (Section 5).

Application of Data-driven Inverse Dynamics We generalize
the data-driven inverse dynamics problem to the constraint-based
motion synthesis problem (Section 6). We show the power and
effectiveness of our method on motion editing, filtering and motion
control.

4 Kinematic and Dynamic Motion Database

We construct the first full-body motion capture database that accu-
rately captures contact forces, center of pressure, torsional torques

and internal joint torques for varieties of human motions including
walking, jumping, running, turning and hopping. In this section,
we will discuss the construction of kinematic and dynamic motion
database. We acquire kinematic and dynamic motion data using
Vicon motion capture system, force plate and pressure insoles.
Because the number of available force plates limits the number of
consecutive gait cycles that can be analyzed [Hreljac and Marshall
2000], we use pressure insoles to expand our capture volume. The
pressure insoles can only provide the vertical force and center
of pressure information. In order to construct the whole contact
information and expand our capture volume, we use Vicon device
for full-body kinematic data capture, and pressure insoles and force
plates for contact information. In this paper, the motion data are
obtained mainly by wearable pressure insoles.

Data Acquisition. We performed a series of captures to create a
large motion database (about 12 minutes per subject) using a Vicon
optical motion capture system with twelve 120 Hz cameras [Vicon
2016], four Kistler force plates [Kistler 2016], a pair of pressure
insoles with 99 sensors each [Novel 2016] (The accuracy is linear
within± 3% of full scale). The pressure insoles data are transmitted
via a wireless Bluetooth connection at 100 fps. Six healthy
subjects (Table 1) take part in the capture. The database consists of
a wide variety of human actions, including walking with different
speeds (quick, normal and slow), step sizes (big, medium and
small), turning angles (45◦, 90◦ and 180◦ left and right turning),
running with different step sizes (big, medium and small), jumping
(in place and forward with 0◦, 90◦ and 180◦ turning angles),
hopping (in place and forward with 0◦ and 90◦ turning angles) and
their transitions (run to walk, walk to run, jump to run, run to jump,
walk to jump and jump to walk).

Subject Height(cm) Weight(kg) Age(year)
A 177 66 28
B 175 70 22
C 178 71 21
D 173 60 25
E 166 55 24
F 176 75 32

Table 1: Subject characteristics

Data Synchronization. Each pressure sensor of pressure insoles
records an analog resistance reading proportional to the applied
pressure, which is then converted to a digital value. The relationship
of the analog resistance readingRm, the digital pressure force value
Pm returned and the scaling parameter km is defined as follows:

Pm = km/Rm (1)

Data from different devices are synchronized by aligning contact
events to the timeline of the Vicon camera. The Kistler force plate
data are synchronized to Vicon motion capture data by hardware.
The pressure insoles are not synchronized to the Vicon system or
Kistler force plate by hardware. We have designed an algorithm
to synchronize the Kistler force plate and Novel pressure insoles.
We compute the time shift δt between Kistler force plate and Novel
pressure insoles and scaling parameter km by solving the following
optimization problem

min
δt,km

∑
t

‖F t+δtz −
∑
m

km
Rtm
‖2+w1

∑
t

‖copt+δt−
∑
m

Postm
km
Rtm
‖2

(2)
where F t+δtz is the vertical component of the contact force of the
force plate at time t + δt, copt+δt is the center of pressure of the
force plate at time t+ δt, Postm is the position of the mth pressure
sensor at time t, and Rtm is the reading of the mth pressure sensor



Figure 2: System overview.

at time t. The weight w1 is set to 100. The algorithm provides
very accurate synchronization, usually less than 1 frame in our
experiments. This accuracy is sufficient for the synchronization
between the force plate and the pressure-sensing shoes. The Kistler
force plate are running at a much higher frame rate (1000fps), hence
picking the frame with the closet time stamp for alignment usually
gives satisfactory results. In Figure 3, we shows the result of data
synchronization.
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Figure 3: Data synchronization of force plate and the pressure
insoles. The L and R represent the left foot contact and right foot
contact. The first two steps are not on the force plates.

Body Segment Parameter (BSP) Optimization. Acquiring full-
body dynamic motion data requires computing joint torques, given
physical quantities of each bone segment and contact forces. We
can use the force plate and pressure insoles to capture the contact
forces. However, the measurement of BSP is difficult because the
human body parts are not as easily described as rigid bodies with
defined joints and inflexible geometry, daily varying mass, etc. Our
dynamic model approximates human motion with a set of rigid
body segments using the Vicon Plug In Gait model in Nexus [Vicon
2016]. The skeleton fit is done by Vicon Nexus. We describe a
full-body character pose with a set of independent joint coordinates
q ∈ R44, including absolute root position, orientation and the
relative joint angles of 17 joint. These bones are pelvis (6 DOF),
head (3 Dof), thorax (3 Dof) and left and right shoulders (2 Dof),
arms (3 Dof), forearms (2 Dof), hands (2 Dof), upper legs (3 Dof),
lower legs (1 Dof) and feet (3 Dof).

We use Newtonian dynamic equations to optimize the physical
properties of human bone segment. The Newtonian dynamic

equations for full body movement can be defined as follows:

M(q)q̈ + C(q, q̇) +G(q) = τ + JTF F + JTτzτz (3)

where q, q̇ and q̈ represent the joint angle poses, velocities and
accelerations, respectively. The quantitiesM(q), C(q, q̇) andG(q)
are the joint space inertia matrix, centrifugal/Coriolis and gravi-
tational forces, respectively. The vector τ , F and τz are internal
joint torques, contact force and torsional torque respectively. JF
and Jτz are contact force Jacobian matrix and torsional torque
Jacobian matrix respectively. Human muscles generate torques
about each joint, leaving global position and orientation of the
body as unactuated joint coordinates. The movement of global
position and orientation is controlled by contact forces F . We have
captured the movement of global position and orientation by the
Vicon motion capture system and contact force by Kistler force
plate. As a result, the redundancy introduced by the use of whole
body kinematic data and force plate data can be used to improve
the accuracy of the estimated body segment parameters. To achieve
this goal, we initialize each subject’s body node approximated by
a cuboid with the same density. The dimensions of cuboids are set
by Plug In Gait models. Assuming the weight of each subject is
known, we can use it to compute the physical quantities of each
bone segment as the initial value of the body segment parameter
optimization.

For an input motion, we select K frames with equally spaced, and
formulate the body segment parameter optimization as follows:

min
m,com,I

w1

K∑
i=1

‖(M(q)q̈ +C(q, q̇)+G(q)−JTF F−JTτzτz)1:6‖
2

+w2

n∑
j=1

||Ij − Ijinit||2 + w3

n∑
j=1

||mj −mjinit||2

+w4

n∑
j=1

||comj − comjinit||2

subject to mtotal =

n∑
j=1

mj .

(4)
where m, com, I represent the set of mass, center of mass and the
inertia of body nodes, mj , comj , Ij represent the mass, center of
mass, mass inertia of the jth body node, mjinit, comjinit, Ijinit is the
initial mass, center of mass and mass inertia value of the jth body
node. mtotal is whole mass of human body. The subscript 1:6 means
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Figure 4: Part of kinematic and dynamic patterns (joint angle, internal joint torque, contact force and center of pressure) obtained by
temporally aligning and averaging 120 captured walking sequences.

taking the first six elements of the vector. We optimize using the
Levenberg-Marquardt programming method [Bazaraa et al. 1993].
The weights w1,w2,w3 and w4 are set to 0.1, 10, 5 and 10,
respectively.

We do the optimization for 100 different motion capture sequences
(walking, running, jumping and hopping) of the same subject, and
get the average value of mass, center of mass and mass inertia as
the final physical properties of the subject. The statistics about the
estimated physical properties can be found in the supplementary
material. The resulting body parameters are in the reasonable
ranges of human data as compared with the biomechanics litera-
ture [Ho et al. 2013].

Full-body Inverse Dynamics Optimization. Because the number
of available force plates limits the number of consecutive gait
cycles, we use pressure insoles to expand our capture volume. The
dynamic data are obtained mainly by pressure insoles. The pressure
insoles can only provide center of pressure and the vertical force
information with the help of scaling parameter which has been
solved in the data synchronization part. In this part, we use the
BSP information to reconstruct the internal joint torques, contact
forces, torsional torques and center of the pressure from kinematic
motion data and pressure data.

We formulate the optimization for every frame as follows:

min
F,cop,τz

w1||(M(q)q̈ + C(q, q̇) +G(q)− JTF F − JTτzτz)1:6||
2

+ w2||Fz − Fzinit||2 + w3||cop− copinit||2
(5)

where F ,Fz ,cop and τz are the contact force, the vertical com-
ponent of contact force, center of pressure and torsional torque
respectively, Fzinit and copinit are the captured vertical contact
forces and center of pressure using pressure insoles. We initialize
the optimization using pressure insole data with Fx = 0, Fy =
0, τz = 0 and optimize using the Levenberg-Marquardt program-
ming method [Bazaraa et al. 1993]. The optimization often took
several seconds to converge. The weights w1,w2 and w3 are set to

1.0, 1.0 and 100, respectively.

In the Data Synchronization step, we synchronize the force plate
data and pressure insole data and get the accurate scaling pa-
rameters of pressure insoles. In the Body Segment Parameter
Optimization step, we use the force plate data to optimize for
the BSP of specified subject. In the Full-body Inverse Dynamics
Optimization step, we use the optimized scaling parameters and
BSP to optimize the contact information and internal joint torques
for pressure insole data. We evaluate the accuracy of contact
information optimized from pressure data by comparing it against
contact information measured by force plates. We also compare
our method with [Zhang et al. 2014]. For a fair comparison, the
same BSP parameter is used. The result of our method and [Zhang
et al. 2014] compared with the force plates data can be found in the
supplementary material.

We have captured 120 sequences of normal walking for subject E
and used the proposed techniques to get the kinematic and dynamic
data. We use dynamic time warping techniques [Myers and Rabiner
1981] to automatically register each sequence which is visualized
in Figure 4. In order to visualize the pattern of center of pressure,
we aligned the foot to the same coordinate. We repeat the captured
motion 3 times and extract the joint angle and joint torque patterns
by temporally aligning and averaging 120 sequences (red curve in
Figure 4). The pattern results are consistent with the biomechanics
literature [Bergmann et al. 2001].

5 Data-driven Inverse Dynamics

Given an input motion y = {(qt, q̇t)|t = 1, .., T}, the problem of
data-driven inverse dynamics is to predict x, x = {(χt, τ t)|t =
1, ..., T}, where χt is the six dimensional contact information
of each foot, χt = {Fx, Fy, Fz, copx, copy, τz}, and τ t is the
internal joint torques at frame t. Fx, Fy, Fz, copx, copy, τz are
three dimensional contact force of different axis, center of pressure
on the ground plane and torsional torque respectively.

We formulate the data-driven inverse dynamics problem in a max-



imum a posteriori (MAP) framework by estimating the most likely
contact χ and joint torque τ from the input motion y:

argmax
x

pr(x|y) ∝ argmax
x

pr(y|x)pr(x) (6)

In our implementation, we minimize the negative logarithm of
the posteriori probability density function pr(x|y), yielding the
following energy minimization problem:

argmin
x
− ln pr(y|x)︸ ︷︷ ︸

Ephysical

+− ln pr(x)︸ ︷︷ ︸
Eprior

(7)

where the first term is the likelihood function measuring how well
the generated contact information χ and internal joint torques τ
match the input motion. The second term is the prior distribution
function.

The data-driven inverse dynamics problem can now be solved by
nonlinear optimization methods, given an input kinematic motion.
The optimization computes internal joint torques and contact infor-
mation by minimizing the following objective function

min
x
λ1Ephysical + λ2Eprior + λ3Edata + λ4Efriction + λ5Esmooth (8)

where Ephysical ,Eprior, Edata, Efriction and Esmooth represent the phys-
ical term, prior term, data term, friction cone term and smoothness
term, respectively. The weights λ1, ..., λ5 control the importance
of each term and are experimentally set to 2, 2, 100, 100, 1. We
describe details of each term in the following subsections.

5.1 Physical term

The term Ephysical measures how well the generated contact infor-
mation and internal joint torques satisfy the physical constraints.
Mathematically we have

Ephysical = − ln prphysics (9)

prphysics ∝ pr(q̈t, q̇t, qt|τ t, χt) (10)

Because of simplified dynamics [Sok et al. 2007]/contact mod-
els [Muico et al. 2009], discretization of physics constraints and
approximate modeling of BSPs, dynamic models are often incon-
sistent with observed data in physics-based modeling. Accordingly,
the Newtonian dynamic equations (Equation 3) are often not satis-
fied precisely. Similar to the work of [Wei et al. 2011], we assume
Newtonian dynamic equations are distributed by Gaussian noise of
a standard deviation of σphysics:

prphysics ∝ exp
‖M(q)q̈ + C(q, q̇) +G(q)− JTF F − JTτzτz − τ‖

2

−2σ2
physics

(11)
where the standard deviation σphysics shows our confidence of
physics-based dynamic models.

5.2 Prior term

Eprior measures how well the generated contact information and
internal joint torques match the contact and joint torque patterns of
specific motion. To compute inverse dynamics for each motion, we
need to segment the input kinematic motion into different contact
configurations (i.e., motion primitives). We segment motion exam-
ples into four distinctive motion primitives automatically according
to the contact information (right foot contact, left foot contact,
double foot contact, and fly state). For walking, there are three
distinctive contact configurations (right foot stance, left foot stance,
and double stance). Running has three (right foot stance, left foot

stance, and flight). This ensures that all the motion segments within
the same motion primitive are contact consistent.

Eprior = − ln prprior (12)

In practice, most human behaviors are intrinsically low dimen-
sional with legs and arms operating in a coordinated way. A
nonlinear manifold is embedded in a high-dimensional space. We
automatically learn a series of low-dimensional linear models to
approximate this high-dimensional manifold. To build a local low-
dimensional model, we search the kinematic and dynamic database
for examples that are close to the current pose, velocity and accel-
eration (qt, q̇t, q̈t). These examples are then used as training data
to learn a simple linear model via Principal Component Analysis
(PCA) [Bishop et al. 1995]. A new local model is created to
optimize the internal joint torques and contact information for each
frame.

In our implementation, we represent the root translation in the
ground plane and the rotations about the vertical axis at the current
frame with respect to the root coordinate system at the previous
frame in order to eliminate the effect of absolute positions in the
ground plane and the rotations about the vertical axis. The query
metric, for each example (q̃, ˜̇q, ˜̈q) in the database is∑

i

wi(α‖qti − q̃i||2 + β||q̇ti − ˜̇qi||2 + γ||q̈ti − ˜̈qi‖2) (13)

The subscript i means the ith degree of freedom. The weight wi
may be chosen to assign more importance to ceratin degree of
freedom. The weights α, β and γ control the importance of each
term and are set to 1.0, 0.1,and 0.01, respectively.

After subtracting the mean, pt, from the K closest examples in
the local region we apply PCA to the covariance matrix of these
K examples {(q̃k, ˜̇qk, ˜̈qk, χ̃k, τ̃k)|k = 1, ...,K}. We set the value
of K to 200. We choose the pose q, angular velocity q̇, angular
acceleration q̈, internal joint torques τ and contact information χ =
{Fx, Fy, Fz, copx, copy, τz} as the feature space of PCA model.
In order to make the priors to be character independent, we scale
the internal joint torques, contact force, torsional torque and center
of pressure by the following equation:

τfeature =
τ

ghmtotal
(14)

Ffeature =
F

gmtotal
(15)

τzfeature =
τz

ghmtotal
(16)

copfeature =
cop− hip

len
(17)

where hip is the hip joint position and len is the length of leg. h
is the height of the character and mtotal is the whole mass of the
character. g is the gravitational acceleration.

We obtain a linear model for the current frame.

zt = pt +Btut (18)

whereBt is constructed from the eigenvectors corresponding to the
largest eigenvalues of the covariance matrix of the local examples.
ut is a low-dimensional representation of the current state zt, zt =
(qt, q̇t, q̈t, τ t, χt)T . We automatically determine the dimensions
of subspaces by keeping 95% of the original energy. In our
implementation, we normalize the different components prior to
the PCA. The dimensions of subspaces vary from 5 to 15. We
model the probability distribution prprior with a Gaussian mixture
model (GMM). The parameters of the Gaussian mixture model
are automatically estimated using an Expectation-maximization
algorithm [Bishop et al. 1995].



5.3 Data term

Thus far, we have discussed how to incorporate the contact and joint
torque priors into the data-driven inverse dynamics optimization
framework. Note that in the prior modeling step, we performed
dimensionality reduction analysis on feature space of (q, q̇, q̈, χ, τ)
and keeping 95% of the original energy. However, for the current
frame, zt = (qt, q̇t, q̈t, τ t, χt)T , the (qt, q̇t, q̈t)T are known
before. In order to make optimized contact information and internal
joint consistent with the given input motion, we need to add some
soft constraints.

Edata = ‖Pzt − (qt, q̇t, q̈t)T ‖2 (19)

where P is the selection matrix for the dimension of (qt, q̇t, q̈t).
We set a higher weight to the data term because PCA subspace
constraints here are enforced as soft constraints rather than hard
constraints.

5.4 Friction cone term

Similar to the work [Wei et al. 2011; Zhang et al. 2014] in physics
based character animation, we use Coulomb’s friction model to
compute the forces caused by the friction between the character and
environment. A friction cone is defined to be the range of possible
forces satisfying Coulomb’s function model for an object at rest.
We ensure the contact forces stay within a basis that approximate
the cone with nonnegative basis coefficients. We use multiple
contact points m = 1, . . . ,M to model the contact between two
surfaces. The contact force can be defined as follows:

f(w1, . . . , wM ) =

M∑
m=1

Bmwm subject to wm ≥ 0 (20)

where the 4×1 vectorwm represents the nonnegative basis weights
for the mth contact force and the matrix Bm is a 3 × 4 matrix
consisting of 4 basis vectors that approximately span the friction
cone for the mth contact force. The coefficient of friction is set to
0.8 in the data acquisition environment. We can edit the coefficient
to generate the motion on different surfaces (Section 6.1).

In our original captured dynamic data, our ground contact model
is represented by ground reaction force, center of pressure and
torsional torque. Therefore, there needs some conversion relation
between the two different contact models.

Efriction =‖F−
M∑
m=1

Bmwm‖2+α‖τz−
M∑
m=1

(posm−cop)×Bmwm‖2

(21)
where F ,cop and τz represent contact force, center of pressure and
torsional torque respectively. posm represents the global position
of the mth contact points. The weight α is set to 100.

5.5 Smoothness term

Esmooth measures the smoothness of the generated contact informa-
tion. The smoothness term is as follows

Esmooth =‖F t+1 − 2F t + F t−1‖2 + α‖τ t+1
z − 2τ tz + τ t−1

z ‖2

+ β‖copt+1 − 2copt + copt−1‖2
(22)

where F ,cop τz are the generated contact force, center of pressure
and torsional torque. The weights α and β are set to 5 and 100,
respectively.

In our implementation, we use the backward difference approxi-
mation to compute joint velocities and use the central difference

approximation to compute joint accelerations with δt set to the
acquisition frame rate (0.01s). We initialize the optimization with
the closest example in the database which is optimized using the
Levenberg-Marquardt programming method [Bazaraa et al. 1993].
We firstly drop the smoothness term Esmooth in the objective func-
tion and use the remaining objective function to optimize for every
single frame. We then add the smoothness term to optimize the
objective function across the entire motion sequence. The first
step converges rapidly because of a good starting point and a low-
dimensional optimization space. Each optimization often took from
5 minutes to two hours to converge without code optimization. All
the experiments are run on a PC with Intel(R) Xeon(R) processor
E5-1620 3.70GHz with 16GB of RAM.

6 Application of Data-driven Inverse Dynam-
ics

In Section 5, the problem of data-driven inverse dynamics is to pre-
dict the contact information and internal joint torque {(χt, τ t)|t =
1, .., T}, given the input motion {(qt, q̇t)|t = 1, .., T}. However,
in general cases, the users want to specify various forms of
kinematic constraints throughout the motion to generate physically-
valid natural looking motions. It is the problem of physics-
based motion generation which can be seen as the application of
data-driven inverse dynamics models. The physics-based motion
generation is to generate a motion {(qt, q̇t, χt, τ t)|t = 1, .., T},
which satisfies the user constraints c, the physics constraints and
prior model constraints. The key idea of our motion synthesis
process is sampling the prior distribution function pr(q, q̇, χ, τ)
to generate a physically-valid motion instance x that matches the
users’ input c. The prior distribution function pr(q, q̇, χ, τ) models
the relation between the human pose, pose velocity, contact forces
and internal joint torques. The formulation of physics based motion
generation is defined as follows:

min
x
λ1Ephysical + λ2Eprior + λ3Ec + λ4Efriction + λ5Esmooth (23)

where Ephysical ,Eprior, Efriction and Esmooth are defined in Section 5.
Ec includes the various forms of kinematic constraints throughout
the motion. In our experiment, we set the weights for Ephysical
,Eprior,Ec,Efriction andEsmooth to 2, 2, 1000, 100 and 1, respectively.
The weight of the constraint term is very large because we want to
ensure the generated motion can match user constraints accurately.

6.1 Motion Editing

As noted in previous work [Wei et al. 2011], the incorporation
of physics into probabilistic motion prior models significantly
improves the generalization of statistical motion prior models.
Our system uses the online local PCA to model the statistical
motion priors. The experimental results show that the system
can generate physically realistic motion that reacts to changes in
physical parameters of interaction environments and human bodies.

Walking on slippery surfaces. We can edit the friction coefficients
to generate various walking motion results on different surfaces.
In Figure 5, we show a simulated character walking on a slip-
pery surface by reducing the friction coefficient to 0.05. In the
accompanying video, we show the generated motions on different
surfaces. Specifically the friction coefficients are 0.8, 0.2, 0.1 and
0.05 respectively.

Moon walking. We can generate an animation that reacts to
changes in gravity of interaction environment. In the accompanying
video, we show the generated motions on moon by setting the
gravity at 1.62m/s2



Figure 5: Generating physically realistic motion that reacts to changes in friction properties of environments: walking on a slippery surface.

Figure 6: Motion filtering of a noisy walking sequence: (left) the original walking sequence contains a significant number of foot-skating
artifacts; (right) foot-skating removal result.

Heavy foot. We can edit an animation by changing the physical
quantities such as mass and inertias of human bodies. For example,
we change the mass of the character by simulating a character
wearing a 10 kilogram shoe. In the accompanying video, we show
the generated motions of wearing 10 kilogram shoe.

6.2 Motion Filtering

One nice property of our data-driven inverse dynamics model is
that they encode environmental contact information and physical
constraints. With such a model, we could filter the noisy motion
that violates environmental contact constraints. For example, foot-
skating artifacts often appear during various motion data processing
stages, such as motion editing, blending, warping, or synthesis. Our
algorithm can be used to automatically remove footskating artifacts
in an input walking sequence after specifying the contact states
manually. Figure 6 shows the result of filtering a noisy walking
sequence. The original walking sequence contains a significant
number of footskating artifacts, in which, instead of remaining
firmly in place, a character’s foot slides on the ground after the
character plants it.

6.3 Motion Control

Our system can be leveraged for motion control systems. Sampling
based methods [Liu et al. 2010; Liu et al. 2015] can tackle control
problems by using the randomized sampling given a reference
motion. In practice, the author uses an offset technique to approx-
imate feedforward torques which can be computed using inverse
dynamics techniques. By using the data-driven inverse dynamics
method, we can predict the internal joint torques for the reference
motion as well. Moreover, our experiments show that we can
greatly reduce the sampling number by using the torques predicted

by data-driven inverse dynamics instead of the feedforward torques.
We can track a normal walking motion using the parameter of
nSample = 4000 and nSave = 500 with feedforward torques.
Meanwhile we can generate a competitive motion with parameters
nSample = 500 and nSave = 100 with the torque prior (torques
computed by data-driven inverse dynamics) for the same reference
motion. We used the same parameter settings (dynamic properties
of character model, PD control parameters, sampling window size
etc) in the two experiments. Please refer to the accompanying video
for more detail.

7 Results

In this section, we test our algorithm on a wide variety of human
actions, including walking, running, jumping and hoping (Sec-
tion 7.1). We assess the quality of the generated ground contact
information by comparing it with ground truth data. We evaluate
the effectiveness of our algorithm by comparing it with single frame
inverse dynamics and spacetime optimization (Section 7.2). We
test the generalization ability of our data-driven inverse dynamics
to new people and new motions (Section 7.3). We also evaluate the
importance of contact force and joint torque priors and physical
constraints for data-driven inverse dynamics (Section 7.4). Our
results are best seen in the accompanying video.

7.1 Test on Real Data

We test our algorithm on a wide variety of human actions, including
walking, running, jumping and hoping. The accompanying video
shows the data-driven inverse dynamics result for a long motion
sequence generated by using motion graph technique [Xia et al.
2015].
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Figure 7: Comparison our data-driven inverse dynamics against single frame inverse dynamics and spacetime optimization for a normal
walking: (left) the comparison curves show the internal joint torque of left knee from all three methods and ground truth data; (right) the
comparison curves show the center of pressure from all three methods and ground truth data, where the solid line and dash line represent the
right foot contact and left foot contact respectively.

7.2 Comparison against Ground Truth Data and Alter-
native Methods

We have assessed the quality of the generated contact information
by comparing with ground truth data. We also evaluate the
effectiveness of our data-driven inverse dynamics framework by
comparing against alternative methods.

7.2.1 Comparison against ground truth data

We evaluate the performance of our algorithm via cross validation
techniques. More specifically, we pull out an entire motion se-
quence in the training data as testing data, use it to extract the labels
of foot contact information (double support, single support etc.),
and apply the data-driven inverse dynamics algorithm to generate
contact information that matches the labels. Figure 7 shows a
comparison result of reconstructed left knee torque and center of
pressure for normal walking motion. The accompanying video
shows a side-by-side comparison between the ground truth contact
information and the generated contact information. The average
and variances of errors between estimated contact information and
ground truth data on four kinds of motions are provided in the
supplementary material.

We have also done experiments of leaving out categories of motions
(rather than leaving out motions). Our data-driven inverse dynamics
model requires the testing categories and the training categories
are contact consistent. As a result, we cannot use the running
motion categories to do the inverse dynamics for walking motion
categories, because there is no double foot contact state for running
motions. More specifically, we select three categories of walk
(quick walk with medium step, normal walk with big step, slow
walk with small step) for the experiments. Each category contains
ten specific walking motions. We pull out one category as the
testing data and use the other two as the training data. For each
category, we have dropped the prior term and used the physical
term only to calculate the results, which are available in the
supplementary material.

7.2.2 Comparison against single frame inverse dynamics

Inverse dynamics allows us compute torques for the character with
a single point of contact with the environment. For the closed

loop formed during multiple support phase, however, the problem
is undetermined. We use the approximation method proposed
by [Ko and Badler 1996]. This method distributes contact force
F according to the relative distances of the projection of the center
of mass from the ankles. Figure 7 shows a comparison result of
reconstructed left knee torque and center of pressure for normal
walking motion. Further results are provided in the supplementary
material showing the average and variances of errors between
estimated contact information and ground truth data on four kinds
of motions.

7.2.3 Comparison against spacetime optimization

We follow the spacetime formulation in computer graphics litera-
ture [Witkin and Kass 1988; Cohen 1992]. Briefly, we minimize
the deviation from prerecorded kinematic motion data as well as
the sum of the squared torques. This optimization is subject
to foot-ground contact constraints, friction limit constraints, and
the discretization of physics constraints determined by a finite
difference scheme. We use backward difference to compute joint
velocities and use central difference to compute joint accelerations.
We follow a standard approach of representing qt using cubic
B-splines. We solve the optimization problem using sequential
quadratic programming (SQP) [Bazaraa et al. 1993], where each
iteration solves a quadratic programming subproblem. Figure 7
shows a comparison result of reconstructed left knee torque and
center of pressure for normal walking motion. We similarly provide
the average and variances of errors between estimated contact
information and ground truth data on four kinds of motions in the
supplementary material.

7.3 Generalization Ability

We evaluate the generalization ability of our data-driven inverse
dynamics in terms of different subjects and new motions which are
not in the database.

7.3.1 Generalization to new people

We have tested our algorithm on different characters with different
BSPs. To achieve this goal, we have constructed ground truth
data for two subjects (A and B). We then used data-driven priors
embedded in ground truth mocap data of subject A to solve the



inverse dynamics problem of subject B. The results can be found
in the supplementary material. The subject characteristics for A
and B are shown in Table 1. We have done 3D scans for Character
A and B using Artec Eva 3D object scanner [Artec3D 2016], in
order to show the differences in anthropometry (Figure 8). The
accompanying video shows a side-by-side comparison between
the ground truth contact information and the generated contact
information using characters A and B’s prior respectively. Please
refer to the accompanying video for more detail.

Figure 8: Character A and B’s meshes scanned by Artec Eva 3D
object scanner.

7.3.2 Generalization to new motions

We test the generalization ability of the data-driven inverse dynam-
ics model to new motions. We have captured a Tai Chi motion
sequence using Vicon, pressure insoles and force plates and used
the preprocessing pipeline in Section 4 to construct the ground truth
data. We use walking, running, hopping and jumping motions as
training data. More details are available from the accompanying
video and supplementary material.

We have also captured a walk upstairs motion sequence and used
the same settings to construct the ground truth data. We test our
model using the training data of walking, running, hopping and
jumping motions. However, the results are not satisfactory. Even
without the prior term, we can get a relatively better result than
with the prior term. Please refer to the accompanying video and
supplementary material for more detail.

7.4 Component Evaluation

In this section, we will evaluate the importance of key components
of our data-driven inverse dynamics framework by dropping physi-
cal term Ephysical and prior term Eprior in Equation 8.

The importance of the physical term. This experiment demon-
strates the importance of physical constraints to our data-driven
inverse dynamics. We remove the physical term in the objective
function and use the remaining terms to optimize the contact forces
and joint torques across the entire motion sequence. We select a
sequence of lifting a heavy object with left hand ( frame 0-100 is
the left stance phase; frame 76-175 is right stance phase). The mass
of the heavy object is 5kg. According to the Euler’s equations in

rigid body dynamics, the external moment of the coronal (frontal)
plane is smaller when the supporting leg is on the same side with
the heavy object (the left stance phase in this example) than that
on the other side. With the physical term, the external moment
of the coronal plane reacts appropriately to the added mass as
noted in Figure 9. As expected, without the physical term the
external moment of the coronal plane dose not respond to the
added mass, because there are only normal walking motions in
the motion database, in which the external moments of the coronal
plane are nearly symmetric. This can be seen in Figure 9, in which
the external moments of left stance and right stance are nearly
symmetric. Please refer to the accompanying video for more detail.
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Figure 9: The external moment of the coronal plane with the
physical term and without the physical term. The L and R represent
the external moment on the left foot and right foot.

The importance of prior term. This comparison shows the
importance of prior term for data-driven inverse dynamics. More
specially, we test the data-driven inverse dynamics model on the
180 turning motions. Further evaluation of the contribution of the
prior term is presented in the supplementary material. As shown in
the accompanying video, the use of the prior term greatly improves
the accuracy of estimation of contact force and center of pressure.

The choice of prior models. The data-driven models are primitive-
dependent. In other words, for each action, we first segment the
whole motion sequence based on contact states and then build
data-driven models for each primitive. We use the online local
PCA method to model the high-dimensional manifold for every
single frame. We can also model the priors using a global PCA
method (global prior model) which do the PCA according to the
primitive with the same contact states. See the supplementary
material for further results evaluating the performance of choosing
different prior models. Please refer to the accompanying video for
more detail. The online local PCA model avoids the problem of
finding an appropriate structure for a global model, which would
necessarily be high-dimensional and nonlinear.

8 Discussion and Conclusion

In this paper, we present a novel data-driven inverse dynamics
method to accurately estimate the physical contact information and
internal joint torques for the input kinematic motion data. Results
demonstrate our data-driven inverse dynamics method outperforms
alternative methods. More significantly, our data-driven inverse
dynamic model can be integrated into other motion synthesis model
such as motion editing, filtering and motion control. We show that
we can generate a natural-looking and physically realistic human
motion that reacts to changes in physical parameters such as body
segment parameters and friction properties of environments.

With the use of pressure insoles, we have expanded our capture vol-
ume. The pressure insoles can only provide the vertical force and



center of pressure information. We capture the force plate data and
the pressure insoles’ data simultaneously, and synchronize the data
by aligning contact event and compute the scales of the pressure
insoles. Our method can estimate the scales of pressure sensors
accurately. After the synchronization and optimization of BSP, we
do the full-body inverse dynamics optimization to get the ground
truth data. We visualize the data to get clear kinematic and dynamic
patterns which are consistent with biomechanics literature. We
believe these data will provide insights into designing controllers
for simulated virtual humans and biped robots. In particular, the
captured kinematic and dynamic data could be leveraged for many
applications in human motion processing, analysis and synthesis,
such as motion registration and physics-based motion control and
optimization. We show an example of using the data-driven inverse
dynamics model in the sampling based motion control.

We combine the Kistler force plate data and Vicon motion capture
data to optimize the BSP for the specified character. However, the
measurement of BSP is difficult because the human body parts
are not as easily described as rigid bodies with defined joints
and inflexible geometry, daily varying mass, etc. Joint location
and rotation axes are very difficult to extract with confidence and
the configuration of each joint can make a huge difference to
inverse dynamics results. In this paper, we adopt the well-known
biomechanical solution of human motion capture and human body
modeling using Plug In Gait Model in Nexus [Vicon 2016] in
which joint locations and rotation axes are known perfectly. The
subject-specific mesh model [Corazza et al. 2010] may improve the
accuracy of body segment parameter computation. In the future, we
plan to use the scanned mesh model and make joint parameters part
of the optimization of BSP for specific subject.

We have tested the generalization ability of our model to new
people and new motions. The results show that the data-driven
inverse dynamics can generate reliable contact information. The
data-driven model can achieve better results than the physical
constraints even for different category of motions. When the
motions move further away from the database, the data will provide
decreasing benefits. However, for the walking upstairs motions,
the data-driven inverse dynamics get worse results than with the
physical term only, which means the prior term may result in worse
estimates. This is partly because scaling rule is too simple. The
scaling rule is designed for the conditions that both contact feet
are in the same plane. A more complex and well-designed scaling
rule may enhance the performance of our algorithm. There are
some basic assumptions in this paper. The database focuses on foot
ground contact only on flat ground. As a result, it is difficult to
generalize it to sloped terrain or steps. There are without nothing
but foot ground contact in the database. Input motion should
not involve any contacts other that these. In our formulation of
data-driven inverse dynamics, we assume the Newtonian dynamics
equation are distributed by Gaussian noise. As a result, our data-
driven inverse dynamic model cannot guarantee successful forward
simulations.

Since our data-driven inverse dynamic model depends on whether
the subject is in single stances, double stances or in the air, for each
action, we should clearly divide the motion into different primitives
corresponding to different contact states. In the future, we would
like to use the “Deformable Motion Models” techniques [Min et al.
2009] to the prior construction encoding the environmental contact
information. With this improvement, we can do the data-driven
inverse dynamics optimization without specifying the contact states
of the input motion.
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